
Statistical Significance & Uses
Statistical significance is a determination by an analyst that the results in the data are not explainable by chance alone. A data set provides statistical significance when the p-value is sufficiently small. When the p-value is large, then the results in the data are explainable by chance alone, and the data are deemed consistent with (while not proving) the null hypothesis. When the p-value is sufficiently small (e.g., 5% or less), then the results are not easily explained by chance alone, and the data are deemed inconsistent with the null hypothesis; in this case, the null hypothesis of chance alone as an explanation of the data is rejected in favor of a more systematic explanation. This signifies to investors and regulatory agencies that the data show a statistically significant reduction in type 1 diabetes. Stock prices of pharmaceutical companies are often affected strongly by announcements of the statistical significance of their new products. Statistical hypothesis testing is used to determine whether the data is statistically significant. When the p-value is large, then the results in the data are explainable by chance alone, and the data is deemed consistent with (while not proving) the null hypothesis.

What Is Statistical Significance?
Statistical significance is a determination by an analyst that the results in the data are not explainable by chance alone. Statistical hypothesis testing is the method by which the analyst makes this determination. This test provides a p-value, which is the probability of observing results as extreme as those in the data, assuming the results are truly due to chance alone. A p-value of 5% or lower is often considered to be statistically significant.



Understanding Statistical Significance
Statistical significance is a determination about the null hypothesis, which hypothesizes that the results are due to chance alone. A data set provides statistical significance when the p-value is sufficiently small.
When the p-value is large, then the results in the data are explainable by chance alone, and the data are deemed consistent with (while not proving) the null hypothesis.
When the p-value is sufficiently small (e.g., 5% or less), then the results are not easily explained by chance alone, and the data are deemed inconsistent with the null hypothesis; in this case, the null hypothesis of chance alone as an explanation of the data is rejected in favor of a more systematic explanation.
Statistical significance is often used for new pharmaceutical drug trials, to test vaccines, and in the study of pathology for effectiveness testing and to inform investors on how successful the company is at releasing new products.
Example of Statistical Significance
Suppose Joe Sample, a financial analyst, is curious as to whether some investors had advance knowledge of a company's sudden failure. Joe decides to compare the average of daily market returns prior to the company's failure with those after to see if there is a statistically significant difference between the two averages.
The study's p-value was 28% (>5%), indicating that a difference as large as the observed (-0.0033 to +0.0007) is not unusual under the chance-only explanation. Thus, the data do not provide compelling evidence of advance knowledge of the failure. On the other hand, if the p-value were 0.01% (much less than 5%), then the observed difference would be very unusual under the chance-only explanation. In this case, Joe may decide to reject the null hypothesis and to investigate further whether some traders had advance knowledge.
Statistical significance is also used to test new medical products, including drugs, devices, and vaccines. Publicly available reports of statistical significance also inform investors on how successful the company is at releasing new products.
For example, Novo Nordisk, a pharmaceutical leader in diabetes medication, reported that there was a statistically significant reduction in type 1 diabetes when it tested its new insulin. The test consisted of 26 weeks of randomized therapy among diabetes patients, and the data gave a p-value that was less than 5%. This signifies to investors and regulatory agencies that the data show a statistically significant reduction in type 1 diabetes. Stock prices of pharmaceutical companies are often affected strongly by announcements of the statistical significance of their new products.
Frequently Asked Questions
How Is Statistical Significance Determined?
Statistical hypothesis testing is used to determine whether the data is statistically significant. In other words, can it be explained as a byproduct of chance alone. Statistical significance is a determination about the null hypothesis, which posits that the results are due to chance alone. The rejection of the null hypothesis is needed for the data to be deemed statistically significant.
What Is P-Value?
A p-value is a measure of the probability that an observed difference could have occurred just by random chance. When the p-value is sufficiently small (e.g., 5% or less), then the results are not easily explained by chance alone and the null hypothesis can be rejected. When the p-value is large, then the results in the data are explainable by chance alone, and the data is deemed consistent with (while not proving) the null hypothesis.
How Is Statistical Significance Used?
Statistical significance is often used to test the effectiveness of new medical products, including drugs, devices, and vaccines. Publicly available reports of statistical significance also inform investors on how successful the company is at releasing new products. Stock prices of pharmaceutical companies are often affected strongly by announcements of the statistical significance of their new products.
Related terms:
Alpha Risk
Alpha risk is the risk in a statistical test of rejecting a null hypothesis when it is actually true. read more
Business Valuation , Methods, & Examples
Business valuation is the process of estimating the value of a business or company. read more
Hypothesis Testing
Hypothesis testing is the process that an analyst uses to test a statistical hypothesis. The methodology employed by the analyst depends on the nature of the data used and the reason for the analysis. read more
Null Hypothesis : Testing & Examples
A null hypothesis is a type of hypothesis used in statistics that proposes that no statistical significance exists in a set of given observations. read more
P-Value
P-value is the level of marginal significance within a statistical hypothesis test, representing the probability of the occurrence of a given event. read more
Statistical Significance
Statistical significance refers to a result that is not likely to occur randomly but rather is likely to be attributable to a specific cause. read more