Poisson Distribution

Poisson Distribution

In statistics, a Poisson distribution is a probability distribution that is used to show how many times an event is likely to occur over a specified period. Poisson Distribution Formula. C.K.Taylor _e_ is Euler's number (_e_ = 2.71828...) _x_ is the number of occurrences _x_! is the factorial of _x_ λ is equal to the expected value (EV) of _x_ when that is also equal to its variance Given data that follows a Poisson distribution, it appears graphically as: ![Poisson Distribution Example](data:image/gif;charset=utf-8;base64,R0lGODlhCgAGAPQAAD9KeNvT0Obe2+ff3Obg1Ofh1eTh3OXm2Ojh2+vj2Ojg3evi3eri3+rk2Ovl2erm2+nm3+vk3uzh3+zj3uzk2evj4Orl4e3i4Ozk4T9KeD9KeD9KeD9KeD9KeD9KeD9KeCwAAAAACgAGAEQIOQAJFAgwwIACAQgGDKAw4YLDCxMYNHSAwYLDCBgjXEiwQMIBCSBDMnwwYQIACCgvNGDAkmWFlxcCAgA7) Poisson Distribution Example. In statistics, a Poisson distribution is a probability distribution that is used to show how many times an event is likely to occur over a specified period. For the Poisson distribution (a discrete distribution), the variable can only take the values 0, 1, 2, 3, etc., with no fractions or decimals. If we further assume 100 random trials, the Poisson distribution describes the likelihood of getting a certain number of errors over some period of time, such as a single day.

A Poisson distribution, named after French mathematician Siméon Denis Poisson, can be used to estimate how many times an event is likely to occur within "X" periods of time.

What Is a Poisson Distribution?

In statistics, a Poisson distribution is a probability distribution that is used to show how many times an event is likely to occur over a specified period. In other words, it is a count distribution. Poisson distributions are often used to understand independent events that occur at a constant rate within a given interval of time. It was named after French mathematician Siméon Denis Poisson.

The Poisson distribution is a discrete function, meaning that the variable can only take specific values in a (potentially infinite) list. Put differently, the variable cannot take all values in any continuous range. For the Poisson distribution (a discrete distribution), the variable can only take the values 0, 1, 2, 3, etc., with no fractions or decimals.

A Poisson distribution, named after French mathematician Siméon Denis Poisson, can be used to estimate how many times an event is likely to occur within "X" periods of time.
Poisson distributions are used when the variable of interest is a discrete count variable.
Many economic and financial data appear as count variables, such as how many times a person becomes unemployed in a given year, thus lending themselves to analysis with a Poisson distribution.

Understanding Poisson Distributions

A Poisson distribution can be used to estimate how likely it is that something will happen "X" number of times. For example, if the average number of people who buy cheeseburgers from a fast-food chain on a Friday night at a single restaurant location is 200, a Poisson distribution can answer questions such as, "What is the probability that more than 300 people will buy burgers?" The application of the Poisson distribution thereby enables managers to introduce optimal scheduling systems that would not work with, say, a normal distribution.

One of the most famous historical, practical uses of the Poisson distribution was estimating the annual number of Prussian cavalry soldiers killed due to horse-kicks. Modern examples include estimating the number of car crashes in a city of a given size; in physiology, this distribution is often used to calculate the probabilistic frequencies of different types of neurotransmitter secretions. Or, if a video store averaged 400 customers every Friday night, what would have been the probability that 600 customers would come in on any given Friday night?

The Formula for the Poisson Distribution Is

Poisson Distribution Formula

Poisson Distribution Formula. C.K.Taylor

Given data that follows a Poisson distribution, it appears graphically as:

Poisson Distribution Example

Poisson Distribution Example. Investopedia

In the example depicted in the graph above, assume that some operational process has an error rate of 3%. If we further assume 100 random trials, the Poisson distribution describes the likelihood of getting a certain number of errors over some period of time, such as a single day.

When to Use the Poisson Distribution in Finance

The Poisson distribution is also commonly used to model financial count data where the tally is small and is often zero. As one example in finance, it can be used to model the number of trades that a typical investor will make in a given day, which can be 0 (often), or 1, or 2, etc.

As another example, this model can be used to predict the number of "shocks" to the market that will occur in a given time period, say, over a decade.

Related terms:

Binomial Distribution

The binomial distribution is a probability distribution that summarizes the likelihood that a value will take one of two independent values. read more

Discrete Distribution

A discrete distribution is a statistical distribution that shows the probabilities of outcomes with finite values. read more

Expected Value (EV) & Calculation

The expected value is the anticipated value for a given investment at some point in the future.  read more

Normal Distribution

Normal distribution is a continuous probability distribution wherein values lie in a symmetrical fashion mostly situated around the mean. read more

Probability Distribution

A probability distribution is a statistical function that describes possible values and likelihoods that a random variable can take within a given range.  read more

Random Variable

A random variable is a variable whose value is unknown, or a function that assigns values to each of an experiment's outcomes. read more

Risk Analysis

Risk analysis is the process of assessing the likelihood of an adverse event occurring within the corporate, government, or environmental sector. read more

Statistics

Statistics is the collection, description, analysis, and inference of conclusions from quantitative data. read more

Stochastic Modeling

Stochastic modeling is a tool used in investment decision-making that uses random variables and yields numerous different results. read more

Variance , Formula, & Calculation

Variance is a measurement of the spread between numbers in a data set. Investors use the variance equation to evaluate a portfolio’s asset allocation. read more